Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 193: 106460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432539

RESUMO

Recent research highlights the profound impact of the gut microbiome on neuropsychiatric disorders, shedding light on its potential role in shaping human behavior. In this study, we investigate the role of the gut microbiome in appetite regulation using activity-based anorexia (ABA) mouse model of anorexia nervosa (AN) - a severe eating disorder with significant health consequences. ABA was induced in conventional, antibiotic-treated, and germ-free mice. Our results show the clear influence of the gut microbiome on the expression of four orexigenic (neuropeptide Y, agouti-related peptide, melanin-concentrating hormone, and orexin) and four anorexigenic peptides (cocaine- and amphetamine-regulated transcript, corticotropin-releasing hormone, thyrotropin-releasing hormone, and pro-opiomelanocortin) in the hypothalamus. Additionally, we assessed alterations in gut barrier permeability. While variations were noted in germ-free mice based on feeding and activity, they were not directly attributable to the gut microbiome. This research emphasizes that the gut microbiome is a pivotal factor in AN's appetite regulation beyond just dietary habits or physical activity.


Assuntos
Anorexia Nervosa , Microbioma Gastrointestinal , Neuropeptídeos , Humanos , Camundongos , Animais , Apetite/fisiologia , Anorexia Nervosa/metabolismo , Neuropeptídeos/metabolismo , Hipotálamo/metabolismo
3.
Sleep Med ; 113: 220-231, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056084

RESUMO

STUDY OBJECTIVES: Microbial antigens can elicit an immune response leading to the production of autoantibodies cross-reacting with autoantigens. Still, their clinical significance in human sera in the context of brain diseases is unclear. Therefore, assessment of natural autoantibodies reacting with their neuropeptides may elucidate the autoimmune etiology of central hypersomnias. The study aims to determine whether serum autoantibody levels differ in patients with different types of central hypersomnias (narcolepsy type 1 and 2, NT1 and NT2; idiopathic hypersomnia, IH) and healthy controls and if the differences could suggest the participation of autoantibodies in disease pathogenesis. METHODS: Sera from 91 patients with NT1, 27 with NT2, 46 with IH, and 50 healthy controls were examined for autoantibodies against assorted neuropeptides. Participants were screened using questionnaires related to sleep disorders, quality of life, and mental health conditions. In addition, serum biochemical parameters and biomarkers of microbial penetration through the intestinal wall were determined. RESULTS: A higher prevalence of autoantibodies against neuropeptides was observed only for alpha-melanocytes-stimulating hormone (α-MSH) and neuropeptide glutamic acid-isoleucine (NEI), which differed slightly among diagnoses. Patients with both types of narcolepsy exhibited signs of microbial translocation through the gut barrier. According to the questionnaires, patients diagnosed with NT2 or IH had subjectively worse life quality than patients with NT1. Patients displayed significantly lower levels of bilirubin and creatinine and slightly higher alkaline phosphatase values than healthy controls. CONCLUSIONS: Overall, serum anti-neuronal antibodies prevalence is rare, suggesting that their participation in the pathophysiology of concerned sleep disorders is insignificant. Moreover, their levels vary slightly between diagnoses indicating no major diagnostic significance.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Neuropeptídeos , Humanos , Qualidade de Vida , Distúrbios do Sono por Sonolência Excessiva/epidemiologia , Narcolepsia/epidemiologia , Autoanticorpos
4.
Sleep Med ; 113: 95-102, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995475

RESUMO

In recent years, there has been an increased interest in elucidating the influence of the gut microbiota on sleep physiology. The gut microbiota affects the central nervous system by modulating neuronal pathways through the neuroendocrine and immune system, the hypothalamus-pituitary-adrenal axis, and various metabolic pathways. The gut microbiota can also influence circadian rhythms. In this study, we observed the gut microbiota composition of patients suffering from narcolepsy type 1, narcolepsy type 2, and idiopathic hypersomnia. We did not observe any changes in the alpha diversity of the gut microbiota among patient groups and healthy controls. We observed changes in beta diversity in accordance with Jaccard dissimilarities between the control group and groups of patients suffering from narcolepsy type 1 and idiopathic hypersomnia. Our results indicate that both these patient groups differ from controls relative to the presence of rare bacterial taxa. However, after adjustment for various confounding factors such as BMI, age, and gender, there were no statistical differences among the groups. This indicates that the divergence in beta diversity in the narcolepsy type 1 and idiopathic hypersomnia groups did not arise due to sleep disturbances. This study implies that using metabolomics and proteomics approaches to study the role of microbiota in sleep disorders might prove beneficial.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Microbioma Gastrointestinal , Hipersonia Idiopática , Narcolepsia , Transtornos do Sono-Vigília , Humanos , Sono
5.
Waste Manag ; 174: 496-508, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128368

RESUMO

Vermicomposting represents an environmentally friendly method for the treatment of various types of biowastes, including sewage sludge (SS), as documented in numerous studies. However, there are few papers providing insights into the mechanisms and toxicity effects involved in SS vermicomposting to present a comprehensive overview of the process. In this work, the vermiremediation of SS containing various micropollutants, including pharmaceuticals, personal care products, endocrine disruptors, and per/polyfluoroalkyl substances, was studied. Two SSs originating from different wastewater treatment plants (WWTP1 and WWTP2) were mixed with a bulking agent, moistened straw, at ratios of 0, 25, 50, and 75% SS. Eisenia andrei earthworms were introduced into the mixtures, and after six weeks, the resulting materials were subjected to various types of chemical and toxicological analyses, including conventional assays (mortality, weight) as well as tissue- and cell-level assays, such as malondialdehyde production, cytotoxicity tests and gene expression assays. Through the vermiremediation process significant removal of diclofenac (90%), metoprolol (88%), telmisartan (62%), and triclosan (81%) was achieved. Although the concentrations of micropollutants were substantially different in the original SS samples, the micropollutants vermiaccumulated to a similar extent over the incubation period. The earthworms substantially eliminated the present bacterial populations, especially in the 75% SS treatments, in which the average declines were 90 and 79% for WWTP1 and WWTP2, respectively. To the best of our knowledge, this is the first study to investigate the vermiremediation of such a large group of micropollutants in real SS samples and provide a thorough evaluation of the effect of SS on earthworms at tissue and cellular level.


Assuntos
Oligoquetos , Triclosan , Animais , Esgotos/química , Solo/química , Triclosan/análise , Triclosan/metabolismo
6.
Heliyon ; 9(12): e23128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076089

RESUMO

The extensive production and use of plastics have led to widespread pollution of the environment. As a result, biodegradable polymers (BDPs) are receiving a great deal of attention because they are expected to degrade entirely in the environment. Therefore, in this work, we tested the effect of two fractions (particles <63 µm and particles from 63 to 125 µm) of biodegradable poly-3-hydroxybutyrate (P3HB) at different concentrations on the specific growth rate, root length, and photosynthetic pigment content of the freshwater plant Lemna minor. Microparticles with similar properties made of polyethylene terephthalate (PET) were also tested for comparison. No adverse effects on the studied parameters were observed for either size fraction; the only effect was the root elongation with increasing P3HB concentration. PET caused statistically significant root elongation only in the highest concentration, but the effect was not as extensive as for P3HB. The development of a biofilm on P3HB particles was observed during the experiment, and the nutrient sorption experiment showed that the sorption capacity of P3HB was greater than PET's. Therefore, depleting the nutrients from the solution could force the plant to increase the root surface area by their elongation. The results suggest that biodegradable microplastics may cause secondary nutrient problems in the aquatic environment due to their biodegradability.

7.
Front Cell Infect Microbiol ; 13: 1258142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900309

RESUMO

Introduction: The midgut epithelium functions as tissue for nutrient uptake as well as physical barrier against pathogens. Additionally, it responds to pathogen contact by production and release of various factors including antimicrobial peptides, similar to the systemic innate immune response. However, if such a response is restricted to a local stimulus or if it appears in response to a systemic infection, too is a rather underexplored topic in insect immunity. We addressed the role of the midgut and the role of systemic immune tissues in the defense against gut-borne and systemic infections, respectively. Methods: Manduca sexta larvae were challenged with DAP-type peptidoglycan bacteria - Bacillus thuringiensis for local gut infection and Escherichia coli for systemic stimulation. We compared the immune response to both infection models by measuring mRNA levels of four selected immunity-related genes in midgut, fat body, hematopoietic organs (HOs), and hemocytes, and determined hemolymph antimicrobial activity. Hemocytes and HOs were tested for presence and distribution of lysozyme mRNA and protein. Results: The midgut and circulating hemocytes exhibited a significantly increased level of lysozyme mRNA in response to gut infection but did not significantly alter expression in response to a systemic infection. Conversely, fat body and HOs responded to both infection models by altered mRNA levels of at least one gene monitored. Most, but not all hemocytes and HO cells contain lysozyme mRNA and protein. Discussion: These data suggest that the gut recruits immune-related tissues in response to gut infection whereas systemic infections do not induce a response in the midgut. The experimental approach implies a skewed cross-talk: An intestinal infection triggers immune activity in systemic immune organs, while a systemic infection does not elicit any or only a restricted immune response in the midgut. The HOs, which form and release hemocytes in larval M. sexta, i) synthesize lysozyme, and ii) respond to immune challenges by increased immune gene expression. These findings strongly suggest that they not only provide phagocytes for the cellular immune response but also synthesize humoral immune components.


Assuntos
Manduca , Animais , Manduca/genética , Manduca/metabolismo , Larva , Muramidase/genética , Muramidase/metabolismo , Imunidade Inata , RNA Mensageiro/metabolismo
8.
Angew Chem Int Ed Engl ; 62(11): e202217532, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625768

RESUMO

Casein kinases 1 (CK1) are key signaling molecules that have emerged recently as attractive therapeutic targets in particular for the treatment of hematological malignancies. Herein, we report the identification of a new class of potent and highly selective inhibitors of CK1α, δ and ϵ. Based on their optimal in vitro and in vivo profiles and their exclusive selectivity, MU1250, MU1500 and MU1742 were selected as quality chemical probes for those CK1 isoforms. At proper concentrations, MU1250 and MU1500 allow for specific targeting of CK1δ or dual inhibition of CK1δ/ϵ in cells. The compound MU1742 also efficiently inhibits CK1α and, to our knowledge, represents the first potent and highly selective inhibitor of this enzyme. In addition, we demonstrate that the central 1H-pyrrolo[2,3-b]pyridine-imidazole pharmacophore can be used as the basis of highly selective inhibitors of other therapeutically relevant protein kinases, e.g. p38α, as exemplified by the compound MU1299.


Assuntos
Caseína Quinase I , Transdução de Sinais , Caseína Quinase I/metabolismo , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Humanos
9.
Biol Rev Camb Philos Soc ; 98(3): 747-774, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36639936

RESUMO

Interaction of engineered nanomaterials (ENMs) with the immune system mainly occurs with cells and molecules of innate immunity, which are present in interface tissues of living organisms. Immuno-nanotoxicological studies aim at understanding if and when such interaction is inconsequential or may cause irreparable damage. Since innate immunity is the first line of immune reactivity towards exogenous agents and is highly conserved throughout evolution, this review focuses on the major effector cells of innate immunity, the phagocytes, and their major sensing receptors, Toll-like receptors (TLRs), for assessing the modes of successful versus pathological interaction between ENMs and host defences. By comparing the phagocyte- and TLR-dependent responses to ENMs in plants, molluscs, annelids, crustaceans, echinoderms and mammals, we aim to highlight common recognition and elimination mechanisms and the general sufficiency of innate immunity for maintaining tissue integrity and homeostasis.


Assuntos
Transdução de Sinais , Receptores Toll-Like , Animais , Imunidade Inata , Sistema Imunitário , Mamíferos
10.
Front Immunol ; 13: 1051155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532070

RESUMO

Annelids and mollusks, both in the superphylum of Lophotrochozoa (Bilateria), are important ecological groups, widespread in soil, freshwater, estuarine, and marine ecosystems. Like all invertebrates, they lack adaptive immunity; however, they are endowed with an effective and complex innate immune system (humoral and cellular defenses) similar to vertebrates. The lack of acquired immunity and the capacity to form antibodies does not mean a lack of specificity: invertebrates have evolved genetic mechanisms capable of producing thousands of different proteins from a small number of genes, providing high variability and diversity of immune effector molecules just like their vertebrate counterparts. This diversity allows annelids and mollusks to recognize and eliminate a wide range of pathogens and respond to environmental stressors. Effector molecules can kill invading microbes, reduce their pathogenicity, or regulate the immune response at cellular and systemic levels. Annelids and mollusks are "typical" lophotrochozoan protostome since both groups include aquatic species with trochophore larvae, which unite both taxa in a common ancestry. Moreover, despite their extensive utilization in immunological research, no model systems are available as there are with other invertebrate groups, such as Caenorhabditis elegans or Drosophila melanogaster, and thus, their immune potential is largely unexplored. In this work, we focus on two classes of key soluble mediators of immunity, i.e., antimicrobial peptides (AMPs) and cytokines, in annelids and bivalves, which are the most studied mollusks. The mediators have been of interest from their first identification to recent advances in molecular studies that clarified their role in the immune response.


Assuntos
Bivalves , Drosophila melanogaster , Animais , Ecossistema , Imunidade Inata , Invertebrados , Vertebrados , Citocinas
11.
Artigo em Inglês | MEDLINE | ID: mdl-35489639

RESUMO

The massive production and use of silver nanoparticles (Ag NPs) have led to their increasing release into the environment. Even though the antimicrobial and cytotoxic effects of native nanoparticles have been well studied, the environmental impacts of transformation products such as silver sulfide nanoparticles (Ag2S NPs) have not been elucidated. In the present study, we assessed the toxicity of Ag2S NPs and silver nitrate (AgNO3), as a source of Ag, to the earthworm Eisenia andrei using a nominal concentration of 5 mg Ag kg-1 soil. We used the OECD guidelines to assess effects on weight loss and mortality for 14 days. After exposure, we also extracted the immune effector cells (coelomocytes) and conducted a battery of biomarker tests. To ensure the quality of the toxicological results, the structural changes of NPs during the experiment and the uptake of silver by the earthworms were monitored. During the experiment, mortality effects were not detected, but a weight loss was observed in the earthworms exposed to Ag2S NPs. Altough Ag2S NPs were engulfed by E. andrei cells, neither phenoloxidase activity nor lipid peroxidation differed from the untreated control group. Cells from earthworms treated with Ag2S NPs exerted very broad value range of nitric oxide (NO) generation, suggesting an imbalance in the NO metabolism. Overall, this study suggests minimal risks associated with Ag2S NPs exposure to earthworms. However, further studies are needed to assure no immunotoxicological or chronic effects on a wider range of terrestrial organisms.


Assuntos
Nanopartículas Metálicas , Oligoquetos , Poluentes do Solo , Animais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Prata/metabolismo , Prata/toxicidade , Compostos de Prata , Nitrato de Prata/toxicidade , Solo/química , Poluentes do Solo/toxicidade , Redução de Peso
12.
Molecules ; 27(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335267

RESUMO

Conventional plastics are being slowly replaced by biodegradable ones to prevent plastic pollution. However, in the natural environment, the biodegradation of plastics is usually slow or incomplete due to unfavorable conditions and leads to faster micro-bioplastic formation. Many analytical methods were developed to determine microplastics, but micro-bioplastics are still overlooked. This work presents a simple method for determining poly-3-hydroxybutyrate and polylactic acid micro-bioplastics in soil based on the thermogravimetry-mass spectrometry analysis of low molecular gases evolved during pyrolysis. For the method development, model soils containing different soil organic carbon contents were spiked with micro-bioplastics. Specific gaseous pyrolysis products of the analytes were identified, while the ratio of their amounts appeared to be constant above the level of detection of the suggested method. The constant ratio was explained as a lower soil influence on the evolution of the gaseous product, and it was suggested as an additional identification parameter. The advantages of the presented method are no sample pretreatment, presumably no need for an internal standard, low temperature needed for the transfer of gaseous products and the possibility of using its principles with other, cheaper detectors. The method can find application in the verification of biodegradation tests and in the monitoring of soils after the application of biodegradable products.


Assuntos
Plásticos , Solo , Biodegradação Ambiental , Carbono , Gases , Plásticos/química , Poliésteres , Solo/química
13.
J Proteome Res ; 21(3): 778-787, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606283

RESUMO

Anorexia nervosa (AN), a pathological restriction of food intake, leads to metabolic dysregulation. We conducted a metabolomics study to reveal changes caused by AN and the effect of hospital realimentation on metabolism. Both stool and serum from patients with AN and healthy controls were analyzed by NMR and MS. Statistical analysis revealed several altered biochemical and anthropometric parameters and 50 changed metabolites, including phospholipids, acylcarnitines, amino acids, derivatives of nicotinic acid, nucleotides, and energy metabolism intermediates. Biochemical and anthropometric parameters were correlated with metabolomic data. Metabolic changes in patients with AN described in our study imply serious system disruption defects, such as the development of inflammation and oxidative stress, changed free thyroxine (fT4) and thyroid-stimulating hormone (TSH) levels, a deficit of vitamins, muscle mass breakdown, and a decrease in ketone bodies as an important source of energy for the brain and heart. Furthermore, our data indicate only a very slight improvement after treatment. However, correlations of metabolomic results with body weight, interleukin 6, tumor necrosis factor α, fT4, and TSH might entail better prognoses and treatment effectiveness in patients with better system parameter status. Data sets are deposited in MassIVE: MSV000087713, DOI: 10.25345/C57R7X.


Assuntos
Anorexia Nervosa , Anorexia Nervosa/metabolismo , Anorexia Nervosa/terapia , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Hormônios Tireóideos , Tireotropina
14.
Front Nutr ; 8: 680870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409061

RESUMO

Anorexia nervosa (AN) is a life-threatening psychiatric disorder with not well-described pathogenesis. Besides the genetic and sociological factors, autoimmunity is also considered to take part in AN pathogenesis. We evaluated general serological factors showing the physiological state of 59 patients with AN at hospital admission and their discharge. We detected the altered levels of some general biochemical and immunological parameters. We also detected decreased levels of appetite-regulating alpha-melanocyte stimulating hormone (α-MSH) in patients at hospital admission. Moreover, elevated anti-α-MSH IgM levels and decreased anti-α-MSH IgA levels were observed in patients with AN. Therefore, we analyzed the gut microbiota composition with special focus on α-MSH antigen-mimetic containing microbes from the Enterobacteriaceae family. We correlated gut bacterial composition with anti-α-MSH Ig levels and detected decreasing IgG levels with increasing alpha diversity. The upregulation of pro-inflammatory cytokines IL-6, IL-17, and TNF-α were detected in patients with AN both prior and after hospitalization. We also evaluated the treatment outcome and improvement was observed in the majority of patients with AN. We provide new data about various serum biochemical parameters and their changes during the patients' hospitalization, with emphasis on the immune system, and its possible participation in AN pathogenesis.

15.
Front Endocrinol (Lausanne) ; 12: 613983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953692

RESUMO

The equilibrium and reciprocal actions among appetite-stimulating (orexigenic) and appetite-suppressing (anorexigenic) signals synthesized in the gut, brain, microbiome and adipose tissue (AT), seems to play a pivotal role in the regulation of food intake and feeding behavior, anxiety, and depression. A dysregulation of mechanisms controlling the energy balance may result in eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). AN is a psychiatric disease defined by chronic self-induced extreme dietary restriction leading to an extremely low body weight and adiposity. BN is defined as out-of-control binge eating, which is compensated by self-induced vomiting, fasting, or excessive exercise. Certain gut microbiota-related compounds, like bacterial chaperone protein Escherichia coli caseinolytic protease B (ClpB) and food-derived antigens were recently described to trigger the production of autoantibodies cross-reacting with appetite-regulating hormones and neurotransmitters. Gut microbiome may be a potential manipulator for AT and energy homeostasis. Thus, the regulation of appetite, emotion, mood, and nutritional status is also under the control of neuroimmunoendocrine mechanisms by secretion of autoantibodies directed against neuropeptides, neuroactive metabolites, and peptides. In AN and BN, altered cholinergic, dopaminergic, adrenergic, and serotonergic relays may lead to abnormal AT, gut, and brain hormone secretion. The present review summarizes updated knowledge regarding the gut dysbiosis, gut-barrier permeability, short-chain fatty acids (SCFA), fecal microbial transplantation (FMT), blood-brain barrier permeability, and autoantibodies within the ghrelin and melanocortin systems in eating disorders. We expect that the new knowledge may be used for the development of a novel preventive and therapeutic approach for treatment of AN and BN.


Assuntos
Autoanticorpos , Transtornos da Alimentação e da Ingestão de Alimentos/imunologia , Microbioma Gastrointestinal/imunologia , Grelina/imunologia , Insulina/imunologia , Leptina/imunologia , Hormônios Estimuladores de Melanócitos/imunologia , Neuropeptídeo Y/imunologia , Transtornos da Alimentação e da Ingestão de Alimentos/microbiologia , Humanos
16.
Gut Microbes ; 13(1): 1-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33779487

RESUMO

Brain-gut microbiota interactions are intensively studied in connection with various neurological and psychiatric diseases. While anorexia nervosa (AN) pathophysiology is not entirely clear, it is presumably linked to microbiome dysbiosis. We aimed to elucidate the gut microbiota contribution in AN disease pathophysiology. We analyzed the composition and diversity of the gut microbiome of patients with AN (bacteriome and mycobiome) from stool samples before and after renourishment, and compared them to healthy controls. Further, levels of assorted neurotransmitters and short-chain fatty acids (SCFA) were analyzed in stool samples by MS and NMR, respectively. Biochemical, anthropometric, and psychometric profiles were assessed. The bacterial alpha-diversity parameter analyses revealed only increased Chao 1 index in patients with AN before the realimentation, reflecting their interindividual variation. Subsequently, core microbiota depletion signs were observed in patients with AN. Overrepresented OTUs (operation taxonomic units) in patients with AN taxonomically belonged to Alistipes, Clostridiales, Christensenellaceae, and Ruminococcaceae. Underrepresented OTUs in patients with AN were Faecalibacterium, Agathobacter, Bacteroides, Blautia, and Lachnospira. Patients exhibited greater interindividual variation in the gut bacteriome, as well as in metagenome content compared to controls, suggesting altered bacteriome functions. Patients had decreased levels of serotonin, GABA, dopamine, butyrate, and acetate in their stool samples compared to controls. Mycobiome analysis did not reveal significant differences in alpha diversity and fungal profile composition between patients with AN and healthy controls, nor any correlation of the fungal composition with the bacterial profile. Our results show the changed profile of the gut microbiome and its metabolites in patients with severe AN. Although therapeutic partial renourishment led to increased body mass index and improved psychometric parameters, SCFA, and neurotransmitter profiles, as well as microbial community compositions, did not change substantially during the hospitalization period, which can be potentially caused by only partial weight recovery.


Assuntos
Anorexia Nervosa/metabolismo , Anorexia Nervosa/microbiologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Neurotransmissores/metabolismo , Adulto , Archaea/classificação , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Índice de Massa Corporal , Eixo Encéfalo-Intestino , Fezes/microbiologia , Feminino , Fungos/classificação , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Humanos , Estudos Longitudinais , Metagenoma , Micobioma , Adulto Jovem
17.
Nanomaterials (Basel) ; 11(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477826

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are manufactured worldwide. Once they arrive in the soil environment, they can endanger living organisms. Hence, monitoring and assessing the effects of these nanoparticles is required. We focus on the Eisenia andrei earthworm immune cells exposed to sublethal concentrations of TiO2 NPs (1, 10, and 100 µg/mL) for 2, 6, and 24 h. TiO2 NPs at all concentrations did not affect cell viability. Further, TiO2 NPs did not cause changes in reactive oxygen species (ROS) production, malondialdehyde (MDA) production, and phagocytic activity. Similarly, they did not elicit DNA damage. Overall, we did not detect any toxic effects of TiO2 NPs at the cellular level. At the gene expression level, slight changes were detected. Metallothionein, fetidin/lysenin, lumbricin and MEK kinase I were upregulated in coelomocytes after exposure to 10 µg/mL TiO2 NPs for 6 h. Antioxidant enzyme expression was similar in exposed and control cells. TiO2 NPs were detected on coelomocyte membranes. However, our results do not show any strong effects of these nanoparticles on coelomocytes at both the cellular and molecular levels.

18.
Nanomaterials (Basel) ; 10(11)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153039

RESUMO

During the last two decades, nanomaterials based on nanoscale zero-valent iron (nZVI) have ranked among the most utilized remediation technologies for soil and groundwater cleanup. The high reduction capacity of elemental iron (Fe0) allows for the rapid and cost-efficient degradation or transformation of many organic and inorganic pollutants. Although worldwide real and pilot applications show promising results, the effects of nZVI on exposed living organisms are still not well explored. The majority of the recent studies examined toxicity to microbes and to a lesser extent to other organisms that could also be exposed to nZVI via nanoremediation applications. In this work, a novel approach using amoebocytes, the immune effector cells of the earthworm Eisenia andrei, was applied to study the toxicity mechanisms of nZVI. The toxicity of the dissolved iron released during exposure was studied to evaluate the effect of nZVI aging with regard to toxicity and to assess the true environmental risks. The impact of nZVI and associated iron ions was studied in vitro on the subcellular level using different toxicological approaches, such as short-term immunological responses and oxidative stress. The results revealed an increase in reactive oxygen species production following nZVI exposure, as well as a dose-dependent increase in lipid peroxidation. Programmed cell death (apoptosis) and necrosis were detected upon exposure to ferric and ferrous ions, although no lethal effects were observed at environmentally relevant nZVI concentrations. The decreased phagocytic activity further confirmed sublethal adverse effects, even after short-term exposure to ferric and ferrous iron. Detection of sublethal effects, including changes in oxidative stress-related markers such as reactive oxygen species and malondialdehyde production revealed that nZVI had minimal impacts on exposed earthworm cells. In comparison to other works, this study provides more details regarding the effects of the individual iron forms associated with nZVI aging and the cell toxicity effects on the specific earthworms' immune cells that represent a suitable model for nanomaterial testing.

19.
Nanomaterials (Basel) ; 10(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659907

RESUMO

Nanomaterials (NMs) can interact with the innate immunity of organisms. It remains, however, unclear whether these interactions can compromise the immune functioning of the host when faced with a disease threat. Co-exposure with pathogens is thus a powerful approach to assess the immuno-safety of NMs. In this paper, we studied the impacts of in vivo exposure to a biocidal NM on the gut microbiome, host immune responses, and susceptibility of the host to a bacterial challenge in an earthworm. Eisenia fetida were exposed to CuO-nanoparticles in soil for 28 days, after which the earthworms were challenged with the soil bacterium Bacillus subtilis. Immune responses were monitored by measuring mRNA levels of known earthworm immune genes. Effects of treatments on the gut microbiome were also assessed to link microbiome changes to immune responses. Treatments caused a shift in the earthworm gut microbiome. Despite these effects, no impacts of treatment on the expression of earthworm immune markers were recorded. The methodological approach applied in this paper provides a useful framework for improved assessment of immuno-safety of NMs. In addition, we highlight the need to investigate time as a factor in earthworm immune responses to NM exposure.

20.
Small ; 16(21): e2000598, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32363795

RESUMO

The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.


Assuntos
Imunidade Inata , Nanoestruturas , Medição de Risco , Imunidade Adaptativa , Animais , Imunidade Inata/efeitos dos fármacos , Nanoestruturas/toxicidade , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...